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Introduction

Setting

Consider the classical Newton dynamics for N particles in the mean filed scaling
in the classical regime. Denote (Xi ,Vi ) the position and the velocity of particle
number i . Then {

dXi = Vi dt,

dVi = 1
N

∑
j 6=i K (Xi − Xj)dt +

√
2σN dW t

i ,
(1)

where Xi ∈ Ω (Td or Rd) and Vi ∈ Rd , and Wi are N independent Brownian
motions which may model random collisions on particles with rate

√
2σN . In

particular, if σN = 0, the system (1) is deterministic. The interaction kernels K
model 2−body interaction force between particles.
As a companion, we also consider the 1st order systems

dXi =
1

N

∑
j 6=i

K (Xi − Xj)dt +
√

2σN dWi (i = 1, 2, · · · ,N.) (2)

where Xi ∈ Ω = Rd or Td .
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Introduction

Complexity of Particle Systems

Particle Systems:

Given by individual based models: conceptually simple;

The number N of particles are usually very large: Analytically and
computationally complicated. N ∼ 1025 in typical physical settings and N
can be 108 ∼ 109 in Bio-Science settings.

Ubiquitous: Physics (particles can represent ions and electrons in plasmas or
molecules in a fluid and even galaxies in some cosmological models),
Bio-sciences (modeling the collective behavior of animals or
micro-organisms); Economics or Social Science (Opinion dynamics,
consensus model, Mean field games)...

Understanding how this complexity can be reduced is a challenging but critical
problem with potentially deep impact in various fields.
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Introduction

Complexity Reduction: Mean Field Equations

The classical strategy to reduce the complexity is to derive a mesoscopic or
macroscopic systems: We no longer trace the exact trajectory of each particle.
Instead we try to capture the statistical or averaged information which is
embedded in the densities typically solving a non-linear PDEs.

In our case, for very large N, one expects to replace the systems (1) and (2) by
the (McKean-)Vlasov equations

∂t f + v · ∇x f + K ? ρ · ∇v f = σ∆v f , ρ(t, x) =

∫
Rd

f (t, x , v)dv , (3)

and
∂tρ+ divx(ρ(K ? ρ)) = σ∆xρ. (4)

Our central goal is to show the mean field limit of the systems (1) or (2)
towards McKean-Vlasov equations (3) or (4) respectively as N →∞ and
σN → σ ≥ 0 and in particular quantify the distance between the particle
systems and the limit PDEs for fixed N.
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Introduction

History Remarks

Maxwell, Boltzmann: Deriving Boltzmann equation; Still Open. Recent
Progress by Lanford 1975 and more recent by Gallagher, Saint-Raymond and
Texier 2014.

Vlasov-Poisson system, that is (3) with K (x) = γx/|x |d . Still open. Recent
progress by Hauray and Jabin 2015, and D. Lazarovici and Pickl 2015.

Classical (McKean-)Vlasov type PDEs: K ∈W 1,∞
loc . Dobrusin 1979.

McKean 1967.

1st order system with singular kernels. The Biot-Savart kernel

K (x) = 1
2π

x⊥

|x|2 . 2D Navier-Stokes equations: Osada 1987, Fournier, Hauray

and Mischer 2014. 2D Euler: Goodman, Hou and Lowengrub 1990.
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Introduction

More Examples of Kernels and Applications

Biological systems modeling the collective motion of micro-organisms. The
1st order system with the Poisson kernel K as the particle methods to
approximate the Keller-Segel equation of chemotaxis. Fournier and
Jourdain, 2015, Godinh and Quininao 2015, Liu and Yang 2016.

Aggregation models given by the 1st order system (2), typically with
K = −∇W and an extra potential term.

Newton dynamics with K = −∇U and with more friction and self-propulsion
terms, modeling the short-range repulsion and long-range attraction
mechanism in Bio-science and in Physics.

Alignment Model: Cucker-Smale model, Motsch-Tadmor model, Krause
model...

K can be step functions in some rating models, K can be highly oscillatory
or even a Dirac mass in certain direction for instance K (x) = (ϕ(x2), δ0(x1))
(2D collisional model with divxK = 0.)
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Mean Field Limit: A New Approach

Main Ideas

We developed a new statistical approach to attack the mean field limit problems
for systems with with realistic and hence more singular or rough interaction
kernels: for instance by studying the N−body Liouville equation, relative entropy
estimates, identifying the critical scales and regularity, combinatorics results in the
spirit of Law of Large Numbers...
In the following, we will use the Newton Dynamics (1) as an example.
Main Idea: Directly compare the joint distribution fN and the f ⊗N where f
solves the limit PDE through the scaled relative entropy (First time applied
in the mean field limit context)

HN(t) := HN(fN |f ⊗N) =
1

N

∫
R2dN

fN log
fN
f ⊗N

dx1 dv1 · · · dxN dvN .
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Mean Field Limit: A New Approach

The Liouville Equation

The key object now is the joint distribution of N−particle fN(t, x1, v1, · · · , xN , vN)
governed by the Liouville equation

∂t fN +
N∑
i=1

vi · ∇xi fN +
1

N

N∑
i=1

∑
j 6=i

K (xi − xj) · ∇vi fN = σN

N∑
i=1

∆vi fN . (5)

Define the marginals fN,k of fN as

fN,k(t, x1, v1, · · · , xk , vk) =

∫
(R2d )N−k

fN(t, x1, v1, · · · , xN , vN)dxk+1vk+1 · · · dxN dvN ,

for k = 1, 2, · · · ,N − 1.
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Mean Field Limit: A New Approach

The Liouville Equation

The reason to study fN and its marginal fN,k : only possible and sufficient for
practical purposes.
One has the existence of weak solutions which dissipate the entropy∫

(R2d )N
fN(t,X ,V ) log fN(t,X ,V )dX dV + εN

∫ t

0

∫
(R2d )N

|∇V fN(s,X ,V )|2

fN(s,X ,V )
dX dV ds

≤
∫

(R2d )N
fN(0) log fN(0)dX dV , for a.e. t,

given initial data with finite entropy or moments for instance, where
X = (x1, · · · , xN) and V = (v1, · · · , vN) for simplicity.
In our framework, the existence of weak solutions is sufficient in contrast
to the existence of well-defined flows in other results.
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Mean Field Limit: A New Approach

A Intermediate Scale

Indeed, the scaled relative entropy indicates a critical intermediate scale
under which one can approximate the marginal fN,k by f ⊗k .

Can we show that fN is close to f ⊗N? The answer is NO. For instance by taking
fN = f̃ ⊗N , the relative entropy (not scaled)∫

R2dN

f̃ ⊗N log
f̃ ⊗N

f ⊗N
= N

∫
R2d

f̃ log
f̃

f

might goes to infinity even though
∫
f̃ log f̃

f is relatively small.

Consequently, we do not have a proper object to approximate fN , but instead we
now do have a proper way to approximate the marginal fN,k , i.e. through f ⊗k .
Good Enough!
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Mean Field Limit: A New Approach

A Intermediate Scale

The argument goes as the following: once we can know that the scaled relative
entropy HN(t) is in the order of 1/N, we can show that the marginals fN,k are
indeed very close to f ⊗k for any fixed k , even though fN might be still far away
from f ⊗N .
Technical reasons for the above critical observation are the monotonicity of the
scaled relative entropy

Hk(fN,k |f ⊗k) :=
1

k

∫
R2dk

fN,k log
fN,k
f ⊗k

dx1 dv1 · · · dxk dvk ≤ HN(fN |f ⊗N)

and the classical Csiszár-Kullback-Pinsker inequality

‖fN,k − f ⊗k‖L1 ≤
√

2kHk(fN,k |f ⊗k).
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Mean Field Limit: A New Approach

Quantitative Version of Propagation of chaos

The results we obtained are in the flavor of propagation of chaos: If initially
HN(0) is in the order of 1/N, then HN(t) . 1

N up to certain time T .

Indeed, HN(t)→ 0 as N →∞ gives a strong version of (Kac’s ) chaos and our
results give a strong version of propagation of chaos and hence implies mean field
limit for a. e. initial data.
In particular, if initially fN(0) = ΠN

i=1f0(xi , vi ) (i.i.d. ), then HN(0) = 0.

We can provide the precise estimates quantifying the distance between particle
systems and the limit PDE model by studying the evolution of the relative entropy.
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Main Results

Mean Field Limit for Vlasov Systems with Bounded Forces

In the article [1], the main result with σ > 0 can be formulated as follows

Theorem 3.1 (Jabin and Wang [1])

Assume that K ∈ L∞ and that there exists ft ∈ L∞([0,T ], L1(R2d)∩W 1,p(R2d))
for every 1 ≤ p ≤ ∞ which solves the limiting equation (3) with in addition

θf = sup
t∈[0, T ]

∫
R2d

eλf |∇v log f |f dx dv <∞,

for some λf > 0. Furthermore assume initially that

sup
N≥2

HN(fN(0)) <∞, HN(fN(0)|f ⊗N0 )→ 0, as N →∞.

and

sup
N≥2

1

N

∫
EN

N∑
i=1

(
1 + |xi |2 + |vi |2

)
fN(0, x1, v1, · · · , xN , vN)dx1 dv1 · · · dxN dvN <∞.
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Main Results

Then there exists a universal constant C > 0 s.t. for any t ∈ [0,T ],

HN(fN(t)|f ⊗Nt ) ≤ eC ‖K‖L∞ θf t/λf

(
HN(f N0 |f ⊗N0 ) +

C

N

)
.

Remark

By comparing fN solving the Liouville equation and f ⊗N solving a modified
Liouville equation, one has the relative entropy estimate

HN(t) ≤ HN(0)− 1

N

∫ t

0

∫
R2dN

fNRN dZ ds, (6)

where

RN =
1

N

N∑
i,j=1

∇vi log f (xi , vi ){K (xi − xj)− K ? ρ(xi )}.

Trivial bound
∫ t

0

∫
· ∈ O(N), but we can show it is in the order 1. Laws of

Large Numbers, Cancellation rules.
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Main Results

Remark

In [1], we can deal with the deterministic case with σN ≡ 0, the nonvanishing
viscosity case with σN → σ > 0 as N →∞ and the vanishing viscosity case
with σN → 0 as N →∞ at the same time with proper modified conditions.

This is the only result so far to our knowledge for non Lipschitz
kernels K in the stochastic case with vanishing or degenerate
diffusion.

The presence of noise does not play any significant role in [1]. Even so we
gain one more derivative compared to classical theory which requires that
K ∈W 1,∞.

By carefully exploiting the diffusion or the dissipation of the relative
entropy in particular, we then push our results to the case with
K ∈W−1,∞, gaining two more derivatives compared to the classical results.
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Main Results

Proof of the Main Theorem

Main Step of the Proof: Denote that f̄N = f ⊗N ,

the tensor product of f solves

∂t f̄N + LN f̄N = f̄NRN .

Since fN is a weak solution to the Liouville equation,

HN(t) =
1

N

∫
(Ω×Rd )N

fN log(
fN

f̄N
)dZ =

1

N

∫
fN log fN −

1

N

∫
fN log f̄N

≤ 1

N

∫
f 0
N log f 0

N −
εN
N

∫ t

0

∫
|∇V fN |2

fN
− 1

N

∫
fN log f̄N .

Since f̄N is smooth, log f̄N can be used as a test function against fN , weak
solution to the Liouville Equation∫

fN log f̄N =

∫
f 0
N log f̄ 0

N +

∫ t

0

∫
fN(s,X ,V ) (∂t log f̄N + L∗N log f̄N)dZ ds.
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Main Results

Main Steps of the Proof -continued

Substitute the equation of f̄N ,∫
fN log f̄N =

∫
f 0
N log f̄ 0

N+

∫ t

0

∫
fN RN+εN

∫ t

0

∫
fN

(
∆V f̄N

f̄N
+ ∆V log f̄N

)
.

Classical entropy estimates shows that∫
|∇V fN |2

fN
+

∫
fN

(
∆V f̄N

f̄N
+ ∆V log f̄N

)
dZ ≥ 0,

which gives

HN(t) ≤ HN(0)− 1

N

∫ t

0

∫
fNRN dZ ds. (7)
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Main Results

Main Steps of the Proof-continued

Frenchel’s inequality for function u(x) = x log x , i.e.for x , y ≥ 0,

xy ≤ x log x + exp(y − 1).

Hence,

−fNRN ≤
f̄N
ν

(
fN

f̄N
ν |RN |

)
≤ f̄N

ν

(
fN

f̄N
log(

fN

f̄N
) + exp(ν |RN |)

)
,

which gives

HN(t) ≤HN(0) +
1

ν

∫ t

0

HN(s) ds

+
1

ν

1

N

∫ t

0

∫
f̄N exp(ν |RN |)dZ ds.

(8)
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Main Results

Main Steps of the Proof-continued

We may apply the main estimate to R̃N = ν RN . This implies that

L = sup
N

sup
t∈[0, T ]

∫
f̄N exp(ν |RN |)dZ <∞.

Inserting this in (8) gives

H(fN |f̄N)(t) ≤ H(fN |f̄N)(0) +
1

ν

∫ t

0

H(fN |f̄N)(s) ds +
Lt

νN
,

and up to time T > 0, by Gronwall’s inequality

HN(t) ≤
(
HN(0) +

LT

νN

)
exp(t/ν). (9)
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Main Results

The scale of RN

Recall that

RN =
1

N

N∑
i,j=1

∇vi log f (xi , vi ) · {K (xi − xj)− K ∗ ρ(xi )} ,

with the convention that K (0) = 0. A trivial bound for |RN | is simply

|RN | ≤ (2‖K‖L∞‖∇v log f ‖L∞)N. (10)

However inserting this bound in the inequality of HN(t) would only give that
HN(t) = O(1) without any chance of converging. Instead the main estimate
essentially proves that RN is of order 1 and not of order N.
Goal: To get ∫

(Ω×Rd )N
f̄N exp(|RN |)dZ ≤ C <∞,

where C doesn’t depend on N.
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Main Results

Idea of the Proof of the Main Estimates

By Taylor expansion,∫
f̄N exp(|RN |)dZ ≤ 3

∞∑
k=0

1

(2k)!

∫
|RN |2k f̄N dZ .

It is now sufficient to bound the summation in the right hand side.
IDEA: We divide the summation in two different cases: k is small compared to N
or k is comparable or larger than N.
The first part, 3k ≤ N, is more delicate and requires some preparatory
combinatorics work.
The second part, 3k > N, is almost trivial since now the coefficients 1

(2k)!

dominates. The trivial bound for |RN | is good enough in this case.
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Main Results

Mean Field Limit for 1st Order Systems

Notation: Now ρN is the joint distribution of (X1, · · · ,XN).

Theorem 3.2 (Jabin and Wang [3])

Assume K ∈W−1,∞ and divxK ∈ L∞ and ρ(t, x) ∈ L∞([0, T ], L1(Ω) ∩W 2,p
loc )

for every 1 ≤ p ≤ ∞ solves the macroscopic equation (4) with

sup
t∈[0,T ]

‖∇x log ρ‖L∞ <∞, sup
t∈[0,T ]

(
sup
p≥1

‖R‖Lp(ρ dx)

p

)
<∞,

where we define that

Rhl(x) =
1

ρ(x)
∂l∂hρ(x), R(x) =

d∑
h,l=1

|Rhl(x)|

Assume that the initial data ρ0
N of the Liouville equation satisfies the entropy and

moment bounds and
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Main Results

HN(ρ0
N |ρ⊗N0 ) =

1

N

∫
ΩN

ρ0
N log(

ρ0
N

ρ⊗N0

)dX → 0, as N →∞.

Consider a corresponding weak solution ρN to the Liouville equation then

sup
t∈[0, T ]

HN(ρN |ρ⊗Nt )(t) −→ 0, as N →∞.

Remark

In this case, the presence of noise is significant. Indeed, now the dissipation of the
relative entropy reads (for simplicity assume that σN = σ > 0),

HN(t) ≤ HN(0)−
∫ t

0

DN ds − 1

N

∫ t

0

∫
ΩN

ρNRN dX ds − 1

N

∫ t

0

∫
ΩN

ρNQN dX ds,

where

DN = σ
1

N

∫
ΩN

ρN |∇X log
ρN
ρ⊗N
|2 dX .

Zhenfu Wang (UMD) Mean Field Limit Nov. 29, 2016 26 / 30



Main Results

Remark

The assumption can be relaxed to
The kernel K permits a decomposition K = K1 + K2, where
K1 ∈W−1,∞, divK1 ∈ L∞ and K2 ∈ L∞.

The above result applies to the case K (x) = (φ(x2), δ0(x1) for certain 2D
collision model.

To complete the control on HN(t), more delicate combinatorics arguments
are needed.
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Main Results

Further Discussion

1 Quantitative result for Stochastic Vortex Model.

2 The 2nd order Systems with more singular kernels: Couple the relative
entropy estimates with the dispersion estimates.

3 The 1st order system with homogeneous type kernel: Couple the interaction
energy and the Monge-Kantorovich-Wasserstein distance.

4 Deriving Stochastic Euler Equations...

5 Fluctuation around the limit law: second order correction, large derivation
type results...

6 More general particle models, Boltzmann type...

7 Weak-Weak type stability results...
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